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Abstract:

Background:

Anaesthetics are widely used in new-borns and preterm infants, although it is known that they may adversely affect the developing
brain.

Objective:

We assessed the impact of the volatile anaesthetic,  isoflurane, and the intravenous analgesic,  fentanyl,  on immature and mature
embryonic neuronal cells.

Methods:

Primary neuronal cultures from embryonic rats (E18) cultured for 5 (immature) or 15 days (mature) in vitro (DIV), respectively, were
exposed to isoflurane (1.5 Vol.%) or fentanyl (0.8 - 200 ng/ml) for 24 hours. Experiments were repeated in the presence of the γ-
amino butyric acid-A (GABAA) receptor antagonists, bicuculline or picrotoxin (0.1 mmol/l), or the pancaspase inhibitor zVAD-fmk
(20 nmol/l). Cell viability was assessed by methyltetrazolium (MTT) metabolism or lactate dehydrogenase (LDH) release.

Results:

Isoflurane reduced cell viability significantly in primary neuronal cells cultured for 5 DIV (Δ MTT -28 ±13%, Δ LDH +143 ±15%).
Incubation with bicuculline, picrotoxin or zVAD-fmk protected the cells mostly from isoflurane toxicity. After 15 DIV, cell viability
was not reduced by isoflurane. Viability of primary neurons cultured for 5 DIV did not change with fentanyl over the wide range of
concentrations tested.

Conclusion:

Immature primary neurons may undergo apoptosis following exposure to isoflurane but are unaffected by fentanyl. Mature primary
neurons were not affected by isoflurane exposure.
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1. INTRODUCTION

There is controversial epidemiologic evidence to suggest that children who were exposed to anaesthesia as neonates
or infants carry an elevated risk of adverse long-term behavioral or neurodevelopmental outcomes [1 - 6].

Intravenous anaesthetics that block N-methyl-D-aspartate (NMDA) glutamate receptors, such as ketamine, or are γ-
amino butyric acid-A (GABAA) receptor agonists, e.g. benzodiazepines, are known to cause apoptotic death of neurons
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in  the  brains  of  newborn  animals  [7,  8],  associated  with  long-term  cognitive  deficits  [9].  Induction  of  general
anaesthesia  in  infants  mostly  involves  volatile  anaesthetics.  In  newborn  rodents,  pigs  or  non-human  primates,  an
increase of neuronal cell death has been observed following isoflurane exposure [10 - 17], with rather subtle long-term
cognitive dysfunction occurring in a partially sex-disparate fashion [4, 18, 19]. Isoflurane-induced neuronal apoptosis
appears to occur only at  a certain stage of neuronal development,  which is dependent on the age of the neuron but
independent of the age of the animal [15]. Isoflurane, however, appears to have protective properties as well. Survival
of cortical neurons subjected to transient oxygen-glucose deprivation has been found to improve with isoflurane post-
conditioning [20]. Moreover, there appears to be reduced brain damage in mice exposed to isoflurane before or after
ischemic injury [21, 22] or in rats who received isoflurane after induction of germinal matrix hemorrhage [23].

Exposure to isoflurane, which affects various cell types outside and inside the brain [8, 24], causes a panoply of
cardiorespiratory and metabolic side effects [10]. Its use in newborn rodents is associated with considerable mortality
[25]. Therefore, we aimed to characterize the immediate action of isoflurane on isolated immature and mature neurons.

2. METHODS

All experiments were carried out in accordance with ethical principles and guidelines for experiments on animals
and were approved by the animal welfare committees of the Berlin State Office for Health and Social Affairs (LaGeSo),
Germany (Reg 0163/03).

Primary  neuronal  cells  were  prepared  from  the  cortices  of  Wistar  rat  embryos  at  day  18  (E18)
(Forschungseinrichtung  für  Experimentelle  Medizin,  Charité  -  Universitätsmedizin  Berlin).

2.1. Cell Preparation

The cerebral cortices were delivered from the meninges and cells were dissociated by trypsin-EDTA in phosphate
buffered saline (PBS) for 15 minutes at 37°C. Cells were subsequently resuspended in serum-free neurobasal medium
supplemented with 2% B27-supplement (Gibco, Invitrogen, Karlsruhe, Germany), 1% L-glutamine (Sigma-Aldrich,
Taufkirchen, Germany) and 1% penicillin/streptomycin (Biochrom, Berlin, Germany). We homogenised the tissue with
fire-polished Pasteur pipettes by aspirating several times followed by a centrifugation (1200 U/min) for 2 minutes at
room temperature. The resulting pellet was resuspended in medium at 1 x 106 /ml and seeded at 96-well-plates coated
with poly-D-lysine (0.5% w/v in water; Sigma-Aldrich) 100 µl/ well. Cells were incubated at 37°C in a humidified
atmosphere (5% CO2, 95% air). Medium was half-changed every 6th day.

2.2. Isoflurane

After  either  5  DIV (immature  cells)  or  15  DIV (mature  cells),  the  plates  were  placed  in  an  incubator  chamber
(Billups-Rothenberg, Del Mar, California, USA) and flooded with 1.5 Vol.% isoflurane (Forene®, Abbott, Wiesbaden,
Germany) through a vaporizer (Vapomat 6; STEPHAN Medizintechnik, Gackenbach, Germany) in a gas of 5% CO2

and 95% air. The gas concentration in the chamber was analysed continuously by a Capnomac gas monitor (Datex-
Ohmeda, Helsinki, Finland). By reaching a steady state of 1.5Vol% isoflurane with a flow rate of 6 l/min the saturated
chamber was sealed airtight and placed in the same incubator as control cell the for 24 hours.

2.3. Fentanyl

Neuronal cells for 5 DIV were exposed to fentanyl (Fentanyl® Janssen; Janssen Cilag, Neuss, Germany) in various
concentrations from 0.8 to 200 ng/ml for 24 hours. We prepared a stock solution of 400 ng/ml in medium and made a
serial dilution in medium (0.8 ng/ml; 1.56 ng/ml; 3.125 ng/ml; 6.25 ng/ml; 12.5 ng/ml; 25 ng/ml; 50 ng/ml; 100 ng/ml;
200 ng/ml). This cell culture model allowed us to study the effect of high dosages of fentanyl, which are difficult to
assess in non-ventilated newborn rodents due to the respiratory depression caused by fentanyl.

2.4. Inhibition

To examine the role of GABAA receptors, cells were incubated with the GABAA receptor antagonists bicuculline
(0.1 mmol/l; Sigma-Aldrich) and picrotoxin (0.1 mmol/l; Sigma-Aldrich) 30 min prior to isoflurane exposure.

To  characterize  the  type  of  cell  death,  cells  were  treated  with  the  pan-caspase-inhibitor  zVAD-fmk
(benzyloxycarbonyl-valin-alanin-aspartate-fluoromethylketon; Sigma-Aldrich) prior to exposure to isoflurane. zVAD-
fmk inhibits all caspases that are participating in apoptosis but does not affect necrosis.
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2.5. MTT Assay

In the methyltetrazolium (MTT) assay the mitochondrial reductase only present in metabolically active cells reduces
the  yellow  coloured  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide  to  purple  formazan.  10  µl  MTT
(Sigma-Aldrich)  at  a  final  concentration  of  0.5  mg/ml  was  added  to  each  well  containing  1x106  cells  as  described
before. After 2 hours the insoluble formazan was dissolved into a coloured solution by adding 100 µl of 10% sodium
dodecyl sulphate. Absorbance was measured by a microplate reader (Bio-Rad, München, Germany) at 570 nm with a
reference wavelength of 630 nm. The amount of MTT formazan is directly proportional to the number of living cells
[26].

2.6. LDH Release Assay

The lactate dehydrogenase (LDH) release assay (Cell  Death Detection ELISAPLUS; Roche, Grenzach-Wyhlen,
Germany)  was  used  to  assess  the  amount  of  LDH  enzymes  released  into  the  medium  by  cells  undergoing  lysis.
Therefore, the cell-free supernatant was removed from exposed plates and mixed with a catalyst (diaphorase) and a dye
solution (iodonitrotetrazolium chloride (INT) and sodium lactate) from the cytotoxicity detection kit. By the oxidation
of lactate to pyruvate the released LDH in the supernatant reduces NAD+ to NADH+H+. The added catalyst transforms
INT to the coloured formazan by the oxidation of NADH+H+ to NAD+. At a wavelength of 495 nm with reference to
630  nm  the  absorbance  was  quantified  with  a  microplate  reader.  The  amount  of  formazan  product  is  directly
proportional  to  the  enzyme  activity  [27].

2.7. Statistical Analysis

GraphPad  Prism  4.03  software  (GraphPad  Software,  La  Jolla,  CA,  USA)  was  used  for  all  tests.  Results  were
compared with the one-way ANOVA test followed by Bonferroni`s multiple comparison test at a level of significance
of P<0.05. Experiments were repeated as indicated. Data are presented as mean ± standard error of the mean (SEM).

3. RESULTS

3.1. Immature Cells Exposed to Isoflurane

As a marker of cell viability the MTT assay (Fig. 1A) showed a significant decrease of cell viability of the cultures
exposed to 1.5 Vol.% isoflurane in comparison to the untreated control group (71.7 ± 3.8%; P<0.001). The addition of
the  GABAA-receptor  antagonists  lead  to  a  significant  increase  in  cells  exposed  to  isoflurane  in  combination  to  the
antagonists (bicuculline 83.0 ± 1.6% and picrotoxin 83.8 ± 1.7%; P<0.001).

The LDH release assay (Fig. 1B) showed a significant elevation of LDH release of the immature neurones exposed
to  isoflurane  (143.3  ±  4.3%,  P  <  0.001)  in  comparison  to  the  untreated  control  cells.  Cells  treated  with  isoflurane
incubated with GABAA-receptor antagonists showed a significant reduction of cell death (bicuculline 118.2 ± 6.4%,
P<0.01 and picrotoxin 73.1 ± 3.3; P<0.001). There were no significant differences between control cells and untreated
cell incubated with bicuculline or picrotoxin.

3.2. Mature Cells Exposed to Isoflurane

There was no significant reduction in cell viability of mature cells (15 DIV) that were exposed to isoflurane (105.4
± 3.7, ns) (Fig. 1C). Cell viability increased in control cells incubated with bicuculline (129.8 ± 1.9%; P<0.01) and
picrotoxin  (126.2  ±  5.3;  P<0.01)  as  well  as  in  cells  exposed  to  isoflurane  and  bicuculline  (129.3  ±  6.0%;  P<0.01)
compared to isoflurane treated cells. For cells treated with isoflurane and picrotoxin the increase was not significant
(122.1 ± 3.0).

Mature cells exposed to isoflurane showed no significant increase in cell death, measured by LDH release compared
to  controls  (101.8  ±  4.5)  (Fig.  1D).  Control  cells  incubated  with  bicuculline  or  picrotoxin  showed  no  significant
decrease to untreated cells nor did isoflurane treated cells in presence of GABAA-receptor antagonists.

3.3. Inhibition of Apoptosis in Immature Cells

Exposure of immature neurons (5 DIV) showed increased LDH released compared to controls. The addition of the
pan-caspase-inhibitor zVAD-fmk (Fig. 2) to the cultures neutralized the adverse effect of isoflurane on cell viability
(135.3 ± 3.2 vs. 109.1 ± 2.1%, P<0.001).



42   The Open Anesthesiology Journal, 2017, Volume 11 Berns et al.

Fig.  (1).  MTT reduction  and LDH release  of  primary  neuronal  cells  after  24  hours  exposure  to  1.5  Vol% isoflurane  (black)  or
controls (white) in the presence or absence of the GABAA receptor antagonists bicuculline and picrotoxin. Comparison of immature
cells 5 DIV (A) and (B), and mature cells 15 DIV (C) and D). Data are means ± SEM; n = 9; one-way ANOVA test with Bonferroni
post hoc test; ** P<0.01; ***P<0.001.

Fig. (2). LDH release of immature primary neuronal cells (5 DIV) of the rat after a 24 hour exposition to 1.5Vol% isoflurane (black)
and zVAD-fmk in comparison to control cells (white). Data are means ± SEM; n = 5; one-way ANOVA test with Bonferroni post
hoc test; ***P<0.001.

3.4. Immature Cells Exposed to Fentanyl

Immature neuronal cells (5 DIV) treated with fentanyl at concentrations from 0.8 to 200 ng/ml for 24 h showed no
significant  decrease  of  cell  viability  or  an  increase  of  cell  death  assessed  by  MTT reduction  respectively  by  LDH
release (Fig. 3A and B)
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CONCLUSION

The results of the present study indicate that isoflurane damages a proportion of freshly isolated immature neurons
of embryonic rats cultured for 5 days but not mature neurons cultured for 15 days. Isoflurane-induced cell  death is
inhibited by the pan-caspase inhibitor,  zVAD-fmk,  pointing to  apoptosis  as  its  principal  mode.  The toxic  action of
isoflurane  can  be  partially  inhibited  by  bicuculline  or  picrotoxin,  suggesting  involvement  of  the  GABAA  receptor
pathway. Viability of immature neurons is not affected by increasing doses of fentanyl.

The  results  obtained  with  isolated  neuronal  cells  are  in  line  with  what  is  known  from  experiments  involving
newborn animals being exposed to isoflurane. In newborn mice, general anaesthesia with 1.5 Vol.% isoflurane has been
found to cause a 4-11 fold increase of neuronal death in various brain regions, as compared to controls.[10, 28, 29] A 6-
hour  isoflurane  exposure  eliminates  approximately  2%  of  cortical  neurons  [14].  Apoptosis  appears  to  be  the
predominant mode of isoflurane-induced death, as evidenced by caspase-3 cleavage [10]. Notably, mice genetically
deficient  in  the  apoptosis-triggering  cell  surface  receptors  Fas  (CD95)  or  FasL  (CD95L)  show reduced  isoflurane-
induced neuronal cell death [30]. Isoflurane susceptibility vanishes in juvenile and adult animals except for brain areas
displaying continued neurogenesis [28].

Fig. (3). MTT reduction and LDH release of primary neuronal cells (5 DIV) after 24 hours treatment with increasing concentrations
of fentanyl (F1-F9, 0.8, 1.56, 3.125, 6.25, 12.5, 25, 50, 100 and 200 ng/ml, black) compared to controls (white). Data are means ±
SEM; n = 3; one-way ANOVA test with Bonferroni post hoc test.
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The neuronal apoptosis following neonatal isoflurane exposure is linked to altered behaviour and memory functions,
with greater long-term cognitive impairment after multiple neonatal exposures to isoflurane than after a single exposure
[18]. In addition to directly driving neurons into apoptotic cell death, isoflurane also impairs the capacity of astrocytes
to support neuronal development [31] and evokes errors in axon targeting and growth cone guidance in the developing
neocortex  in  a  GABAA  receptor-mediated  fashion  [32].  Our  experiments  using  bicuculline,  a  competitive  GABAA

receptor antagonist, and picrotoxin, a non-competitive GABAA receptor antagonist, demonstrate the involvement of the
GABAA receptor pathway in mediating the apoptosis-inducing action of isoflurane. The differing effects of bicuculline
and picrotoxin might be explained by the modulation of the GABAA receptor by isoflurane by increasing the affinity
and that there seems to by a blocking action at or near the picrotoxin site [33].

Experimentally, the toxic effect of isoflurane for the developing brain extends to non-human primates. Brains of
both fetal [24] and neonatal rhesus macaques [8, 11] display signs of neuronal apoptosis upon exposure to isoflurane
(0.7  -1.5  Vol.% for  5  hours).  In  humans,  there  is  epidemiological  evidence  to  suggest  a  modestly  elevated  risk  of
adverse behavioural or developmental outcomes in children who were exposed to anaesthesia during early childhood [1,
3,  4].  As  all  retrospective  observational  approaches,  these  cohort  database  analyses  are  tainted  with  confounding
variables [34], but randomized controlled trials are about to yield answers [35]. Neurodevelopmental changes induced
by anaesthetics are subtle and therefore require careful controls to be proven. Rather than causing gross or fine motor
impairments which can be diagnosed by standardized examinations at 2 years of age, exposure to anaesthetics at very
early age appears to preferentially provoke long-term deficits in cognition, language and executive functions [2,  5]
which cannot be reliably assessed prior to school age.

Various aspects emerging from the epidemiological data correspond to the results obtained in the experiments with
isolated immature neuronal cells. Susceptibility of the cells to isoflurane was seen only in immature cells, while cells
cultured  for  2  weeks  became  resistant  to  the  action  of  isoflurane.  There  seems  to  be  a  critical  period  of  cellular
development during which neurons are susceptible to anaesthesia-induced apoptosis. Vulnerability towards anaesthetics
reflects the age of the neurons rather than the age of the organism [15] and is linked to ongoing neurogenesis [28]. In
human infants, susceptibility to anaesthetics appears to be restricted to early ages, with very preterm infants exposed
before term being at greatest risk [36, 37]. Children exposed to surgery and general anaesthesia prior to 3 years of age
had  somewhat  lower  scores  than  their  unexposed  peers  in  receptive  and  expressive  language,  even  with  a  single
exposure  to  anaesthesia  [2],  as  did  healthy  school-aged  children  and  adolescents  who  had  undergone  surgery  with
anaesthesia before 4 years of age [5]. In contrast, exposure to anaesthesia at a later age had no measurable effects on
language or cognitive function [38].

Brief exposure times (< 1h) to sevoflurane in vivo had shown to carry little or no risk in a randomized controlled
trial involving human infants with a postmenstrual age < 60 weeks undergoing herniorrhaphy [35]. However, in term
infants undergoing complex cardiac surgery, a positive association between volatile anaesthetic exposure (isoflurane),
MRI-assessed brain injury, and lower neurodevelopmental outcome scores at 12 months of age were demonstrated [39].
In term infants undergoing major non-cardiac surgery, cognitive and motor developmental delay at 2 years of age was
found in less than a quarter of the children assessed, with neurodevelopmental outcome scores on average 0.5 SD below
the normative score of the healthy population [6].

We also studied fentanyl over a wide range of concentrations, initiated by conflicting reports about the effects of
fentanyl in brains of adult rats [40 - 42]. Freshly isolated human lymphocytes may undergo apoptosis when incubated
with fentanyl [43] but fentanyl did not affect cell viability of immature neuronal cells 5 DIV. We used concentrations
from 0.8 to 200 ng/ml of fentanyl in cell cultures that correspond to plasma concentration levels of high-dose fentanyl
application  in  adults  [44  -  46]  and  neonates  [47].  Our  results  are  in  line  with  experiments  involving  mechanically
ventilated newborn piglets  which showed no signs  of  neuronal  apoptosis  after  receiving fentanyl  administered at  a
continuous intravenous infusion over 24 hours at dosages of 50-75 µg/kg/h. In contrast, control animals receiving 2
Vol.% isoflurane showed widespread neuronal apoptosis [13]. Animal experiments using moderate doses of fentanyl in
newborn rats support the neonatal use of fentanyl even in premature newborns [48]. In very low birth weight human
infants, no association between cumulative fentanyl dosage and neurodevelopmental outcomes has been found after
controlling for other variables [49].

In summary, the data presented here add weight to considerations to exert caution when using volatile anaesthetics
in  very preterm infants.  Maturation of  brain  neuronal  cells  appears  to  confer  resistance to  the  apoptosis-promoting
action  of  isoflurane  but  establishing  an  age  limit  for  safe  use  of  volatile  anaesthetics  is  awaiting  further  clinical
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investigations. The apparent lack of neurotoxicity of fentanyl encourages attempts to prioritize opioids over GABAA

agonists when designing anaesthesia protocols for preterm infants.
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