RESEARCH ARTICLE


Isoflurane but not Fentanyl Causes Apoptosis in Immature Primary Neuronal Cells



Monika Berns1, *, Anna Christine Wolter1, Christoph Bührer1, Stefanie Endesfelder1, Thoralf Kerner2
1 Klinik für Neonatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
2 Abteilung für Anästhesie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Asklepios Klinikum Harburg, Hamburg, Germany


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 1583
Abstract HTML Views: 1091
PDF Downloads: 585
ePub Downloads: 466
Total Views/Downloads: 3725
Unique Statistics:

Full-Text HTML Views: 533
Abstract HTML Views: 600
PDF Downloads: 295
ePub Downloads: 207
Total Views/Downloads: 1635



© 2017 Shah et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Charité - Universitätsmedizin Berlin, Klinik für Neonatologie D-13344 Berlin, Germany; Tel: +49-30-450566122; Fax: +49-30-450566922; E-mail: monika.berns@charite.de


Abstract

Background:

Anaesthetics are widely used in new-borns and preterm infants, although it is known that they may adversely affect the developing brain.

Objective:

We assessed the impact of the volatile anaesthetic, isoflurane, and the intravenous analgesic, fentanyl, on immature and mature embryonic neuronal cells.

Methods:

Primary neuronal cultures from embryonic rats (E18) cultured for 5 (immature) or 15 days (mature) in vitro (DIV), respectively, were exposed to isoflurane (1.5 Vol.%) or fentanyl (0.8 - 200 ng/ml) for 24 hours. Experiments were repeated in the presence of the γ-amino butyric acid-A (GABAA) receptor antagonists, bicuculline or picrotoxin (0.1 mmol/l), or the pancaspase inhibitor zVAD-fmk (20 nmol/l). Cell viability was assessed by methyltetrazolium (MTT) metabolism or lactate dehydrogenase (LDH) release.

Results:

Isoflurane reduced cell viability significantly in primary neuronal cells cultured for 5 DIV (Δ MTT -28 ±13%, Δ LDH +143 ±15%). Incubation with bicuculline, picrotoxin or zVAD-fmk protected the cells mostly from isoflurane toxicity. After 15 DIV, cell viability was not reduced by isoflurane. Viability of primary neurons cultured for 5 DIV did not change with fentanyl over the wide range of concentrations tested.

Conclusion:

Immature primary neurons may undergo apoptosis following exposure to isoflurane but are unaffected by fentanyl. Mature primary neurons were not affected by isoflurane exposure.

Keywords: Apoptosis, Developing brain, Fentanyl, Isoflurane, Immature, Mature, Neuronal cells.